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Abstract—Transport Layer Security (TLS) is commonly used
to provide server-authenticated secure channels for HTTPS web
applications. From the viewpoint of the client, however, the server
authentication guarantees of HTTPS are frequently misconstrued
to identify a single HTTPS endpoint or origin whereas, in practice,
the HTTPS server may be serving any one of a large set of origins.
This issue is even more acute in SPDY, a proposed successor to
HTTP already in wide use today, because of a little-known feature
that allows TLS sessions to be reused for requests to origins
other than the one the session was negotiated for. We study
current HTTPS server-side deployments and identify several
vulnerabilities in server identification, all of which lead to serious
attacks on popular websites and cloud-hosting infrastructures.
We show that the common practice of using TLS certificates
that cover multiple domains can be exploited if any one of the
domains hosts untrusted content. We demonstrate that the use
of shared TLS session caches and session tickets across different
hosts and connection reuse in SPDY both weaken server authen-
tication. By combining these vulnerabilities with widespread web
server configuration problems, we describe practical, high-impact
network-based redirection attacks that steal cookies and sign-
on tokens, hijack sessions on popular websites, or can bypass
certificate validation. To counter such attacks and to recover
the isolation guarantees that are commonly assumed in shared
hosting environments, we propose changes to web server software,
TLS libraries, and the SPDY protocol and advocate prudent
practices for the safe usage of TLS.

I. INTRODUCTION

As an ever increasing number of web services are be-
ing moved to the cloud or deployed on distributed content
delivery networks (CDNs) across the world, new challenges
have emerged to secure the communications between clients
and cloud applications. The cloud environment is by nature
security-unfriendly, as it requires the sharing of servers and
network addresses between many unrelated and mutually dis-
trusting principals. So, it presents a tempting target both for
web attacks such as cross-site scripting and for network attacks
such as wiretapping. Indeed, recent reports indicate that the
cloud facilities of major web corporations, including Google,
Microsoft and Apple, may have been the target of large scale
wiretapping by governments [1].

The Transport Layer Security (TLS) protocol [2] remains
the standard defense against network attackers on the web,
providing authentication of the server (and optionally, of the
client) as well as confidentiality and integrity of exchanged
messages. While the precise security guarantees of TLS [3]–
[5] have been extensively studied, even against attackers that
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control some malicious servers visited by the user, these works
consider a traditional deployment model, where each server
only has one network interface and one certificate valid for
a single domain that matches the served website. This model
does not reflect current practices, especially in the cloud, but
also in many mainstream web servers.

First of all, recent measurement studies of TLS certificate
issuance [6], [7] show that many certificates issued today are
valid for more than one domain name, and a large number
contain a domain with a wildcard. Hence, it is a common
practice to use the same certificate on different servers, where
each server may only use a subset of all domains listed
in the certificate. Secondly, the shortage of IPv4 addresses
no longer allows assigning one address per certificate, as
was traditionally required. Instead, the server name indication
(SNI) extension of TLS [8] lets the client announce the domain
for which the session is established in its client hello message,
giving the server a change to return different certificates
depending on this value. Based on this value, the server may
decide which certificate to present to the client. Consequently,
the same IP address may host many different web servers,
with one chosen as a default. Thirdly, new APIs such as
WebSockets, often used to allow push notifications in web
applications, increasingly listen for connections on separate
ports handled by application frameworks such as Node.js
instead of traditional web servers. Hence, the same certificate
may be used across multiple ports on a single IP address.

On the client side, there is a strict and well-defined isolation
policy between principals as represented by their origin, which
consists of the protocol, domain name and port number used to
the retrieve a page, e.g. https://x.com:443. The same-
origin policy (SOP) [9] allows arbitrary interactions between
pages from the same origin, but prevents dangerous ones across
different origins. In particular, if any single page on a given
origin is compromised, either by a cross-site scripting (XSS)
flaw [9], [10], or because it is under attacker control, the whole
origin should be considered compromised as well. Because
of the SOP, many web security papers (e.g. [11], [12]) focus
on how to split complex websites into isolated origins, based
on the trust level of their pages (for instance, login form
should use a dedicated origin, because user passwords should
never be visible to any other page). However, origin isolation
requires to purchase either one certificate per origin, or a more
expensive wildcard certificate, or a multi-domain certificate.
In any case, the complexity of the webserver configuration
increases notably, especially when one IP is shared by multiple
certificates that all contain multiple domains.

The server-side counterpart of the notion of origin is the



virtual host, which we define as a stateful function from
HTTP requests to HTTP responses (modulo some randomized
headers that we don’t consider). The intuition behind this
definition is that a virtual host determines how to handle
everything in a request except the origin. Thus, the role of a
webserver can be split in two parts: when receiving a request,
it must first determine which virtual host to route the request
to, then obtain the response from the chosen virtual host, and
apply some transformations before forwarding it to the client.
Under this definition, we accept that two distinct servers may
rely on the same virtual host, and we call servers that delegate
requests to a virtual host reverse proxies.

Thorough this paper, we only consider the routing job of
an HTTPS server. One of the goals of this paper is to disprove
the widespread assumption that there can be only one virtual
host that can produce a (non-failure) response for a given
origin on an honest browser. The high-level reason why there
can be a mismatch between the intended origin of the request
and the implicit origin of the response is very simple: routing
decisions rely on unauthenticated data, including IP address,
port and SNI (while the SNI should be authenticated by the
TLS handshake, in practice, because of a dubious browser
behavior, it can in fact be tampered). From these discrepancies
follows a class of virtual host confusion vulnerabilities that
allows a network attacker to redirect an HTTPS connection
meant for one origin to the virtual host for a different origin.
Three concrete examples are:

• If a server accepts TLS connections on two ports, a
connection to one port can be redirected to another.

• If a server uses the same TLS certificate to cover two
origins, a connection to one can be redirected to the
other.

• If a server or set of servers share a TLS session cache
or a TLS session ticket key between two different
origins, a resumed TLS connection to one can be
redirected to the other.

The root cause of these confusions is that the server identity
at the IP, TCP, TLS, and HTTP levels does not always match
the authenticated server identity provided by TLS.

The three kinds of confusion above can be exploited
to mount concrete attacks against widely used web servers
and cloud hosting frameworks. Four example network-based
attacks described in this paper are:

• Malicious HTTPS requests to many websites hosted
by the Akamai CDN can be forwarded to and re-
sponded by a server controlled by an attacker.

• A single sign-on access token on Yahoo (and several
other major websites) can be stolen by redirecting
the sign-on connection to a different Yahoo server
that uses a compatible certificate but hosts unsafe
redirectors.

• A user who connects to Dropbox via a web browser
can be subjected to a cross-site scripting attack by
redirecting the HTTPS connection to a malicious page
stored on the attacker’s Dropbox account.
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Fig. 1. Design of an HTTPS multiplexer

• A connection to the sensitive website
bugzilla.mozilla.org can be redirected
to user-submitted contents on git.mozilla.org,
since both servers share the same TLS session cache.

These exemplary attacks illustrate the widespread and
devastating impact of seemingly innocuous routing decisions
within web servers, SSL terminators, and reverse proxies. We
advocate a systematic study and a more robust design of
HTTPS multiplexers to prevent these attacks. In particular, we
strongly recommend that web servers must not fall back to
default virtual hosts, that they must verify the port specified
in the Host header, and that they must use different session
caches for hosts of different trust levels. Our proposed counter-
measures are implemented as patches to the Nginx web server.

In the rest of the paper, we first investigate in Section II the
behavior of the most common web servers, we demonstrate
their vulnerability to virtual host confusion in Section III,
we show concrete exploits based on these confusions in Sec-
tion IV, and a closely related client-side attack against SPDY
connection sharing in Section V. We then propose several
countermeasures and mitigations for the class of attacks we
discovered, both at the TLS and application level, in Section VI
before we conclude.

II. MULTIPLEXING HTTPS CONNECTIONS

In this paper, we focus on the HTTPS multiplexing problem,
that is, how to choose the right virtual host for a given HTTPS
connection. Figure 1 depicts our abstract notion of an HTTPS
multiplexer: it accepts messages on several IP address and port
pairs, and must chose which virtual host to forward the request
to, as well as decide which certificate to present and how to
manage the TLS session cache and TLS session tickets. This
problem applies to all popular web servers such as Apache,
Nginx or IIS, but also to SSL terminators, CDN frontend
servers and other reverse proxy software.

There are three layers of identity involved in the processing
of HTTPS request: the network layer identity corresponds to
an IP address and port; the transport/session layer identity
consists of a server certificate and TLS session database and/or
ticket encryption key; lastly, the application layer identity is
conveyed in the Host header of HTTP.



From a URL https://a.com:44/x/y?a=1&b=2#c,
the browser first uses DNS to find the IP address of the domain
a.com. It will then connect to that IP on the indicated port
44, using the HTTPS protocol, and send the requested path and
query parameters /x/y?a=1&b=2 to the server. The fragment
c after the hash isn’t included, and if the server returns a
redirection, it will be kept by the browser in the target URL .
The domain and port a.com:443 of the request are reflected
in the Host header of the request.

We assume that for any given origin, there exists an implicit
tuple of intended identity sets (one for each layer). These sets
only depend on the security policy of the origin and need not
be finite. For instance, https://www.a.com may map to
the list of IP addresses of several CDN nodes in its intended
network identity set, but accept requests from any port. At the
transport layer, the set of identities may for instance include
a certificate for www.a.com, and another one for *.a.net,
in addition to all the session databases and ticket keys from
each CDN node. Finally, both www.a.com and www.a.net
could be valid intended application identities (which implies
both domains have the same trust level).

Concretely, each web server implements some multiplexing
logic based on a configuration file that decides how to forward
an incoming HTTPS connection to a specific virtual host.
While every HTTP server software has its own configuration
syntax, there is a common set of parameters that are used to
define a new TLS-enabled virtual host:

1) A listen directive that specifies one or more IP address
and port number pairs on which the virtual host
accepts connections. It is possible to use a wildcard in
the IP address to accept connections to any address,
whereas the port must be specified.

2) A server name directive that may contain one or more
fully qualified domain names or regular expressions
defining a class of domain names. Without loss of
generality, we assume that the server name is always
given as a single regular expression.

3) A certificate directive which points to the certificate
and private key to use for this virtual host.

4) A session cache directive, that optionally describes
how to store the data structures for session identifier
based resumption, either on memory, on disc or on
an external device. This directive may also specify
the encryption key for ticket-based resumption.

If any of the last three items is not defined in the configu-
ration of the virtual host, its value will be inherited from the
server-wide configuration settings, if available. Figure 2 shows
the configuration file for several virtual hosts in Nginx.

The process of selecting the virtual host to use for a given
incoming connection can be broken up as follows (see [13],
[14] for implementation-specific documentation):

1) First, the server initializes the list of candidates with
every virtual host defined in the configuration.

2) Then, the server inspects the IP address and port on
which the client connected. Virtual hosts defined on
a different IP address (save for wildcards) or port are
removed from the list of candidates.

ssl_session_ticket_key "/etc/ssl/ticket.key";

server { #1
listen 1.2.3.4:443 ssl default_server;
server_name www.a.com;
ssl_certificate "/etc/ssl/a.pem";
ssl_session_cache shared:SSL:1m;
root "/srv/a";

}
server { #2

listen 4.3.2.1:443;
server_name ˜ˆ(?<sub>api|developer)\.a\.com$;
ssl_certificate "/etc/ssl/a.pem";
root "/srv/api";

}

Fig. 2. Example virtual host configuration for Nginx

3) The server next inspects the TLS handshake message
sent by the client.

a) if the client hello message does not include
the SNI extension, the server will return the
certificate configured in the virtual host that
has been marked as default for the given IP
address and port, or if no default is defined,
in the first one;

b) if an SNI value is specified, the server re-
turns the certificate from the first virtual host
whose server name matches the given SNI.
If no server name matches, once again, the
certificate from the default host is used, or
from the first if no default is set up.

4) Next, the web server finishes the handshake and waits
for the client to send its request to inspect the Host
HTTP header. First, if it includes a port number, it
is immediately discarded. Then, the server will pick
either the first virtual host from the candidate list
whose server name matches the HTTP Host, and
if none matches, either the default host, if one exists,
or the first from the candidate list.

There are multiple problems with this virtual host selection
process, for instance, it allows the certificate that is used
to come from a different virtual host than the one used to
serve the request, and it contains multiple dangerous fallback
mechanisms that are not always consistent and whose behavior
depends on the order in which the hosts have been written in
the configuration file. In the next section, we show multiple
scenarios that allows an attacker to get the server to chose
a virtual host that was not intended to server the incoming
request. Such attacks often have a big impact, since they can
at worst lead to server impersonation.

Another interesting aspect besides the virtual host selection
process is the session caching behavior. Unlike the request
processing algorithm,the session cache management differs
significantly between HTTPS implementations. Still, we can
make some interesting observations about Nginx:

• By default, only ticket-based session caching is en-
abled. If no ticket key has been configured, then a
fresh one is created for each IP address and port (but
not for each virtual host). On the other hand, if a
ticket key is specified in the global configuration of



the server, all tickets created by any virtual host can
be resumed on any other. If a ticket key is given in
the configuration of a given virtual host, it will also
replace the key on all previously defined hosts on the
same IP address.

• Session identifier-based resumption needs to be en-
abled manually by configuring a session cache
database on the server. On Nginx, the typical way
to do that is to use a shared cache, which comes
with an identifier. Sessions from all virtual hosts that
use the same identifier in their shared cache can be
resumed on each other, regardless of IP address, SNI
or certificate.

Once again, it turns out that it is very easy to mis-configure
an HTTPS server to allow sessions to be resumed across virtual
hosts. This problem is amplified by the lack of authentication
during the abbreviated TLS handshake: indeed, resumption
is purely based on the session identifier or session ticket,
regardless of the original SNI or server certificate.

To conclude, we define the two main security properties
that we expect an ideal HTTPS multiplexer to have:

1) Authenticated Routing: The multiplexing logic should
only depend on cryptographically authenticated ele-
ments.

2) Consistent Routing: If several HTTPS multiplexers
share server credential (e.g. they have an overlapping
set of certificate DNS names, or share a certificate,
or share a session cache), then each of them must
make the same multiplexing decision for any given
connection (i.e. select the same virtual host).

In this section, we have described the request processing
logic of widely-deployed HTTPS server implementations. In
the next section, we demonstrate that this process does not
impose sufficient checks to enforce the isolation properties
commonly expected for the security of web applications. In
particular, routing is mostly based on parameters that can
be tampered by a network adversary, and many servers use
inconsistent routing.

III. VIRTUAL HOST CONFUSIONS AT HTTP
MULTIPLEXERS

We now introduce a new class of vulnerabilities, called
virtual host confusions. In our threat model, the private keys
of certificate are not compromised and a network attacker is
free to tamper with n and remove the SNI and session ticket
from t (by downgrading the connection to SSL3). However, a
cannot be tampered as it is sent after the TLS handshake. We
say there is a virtual host confusion when any request is routed
to a virtual host that wasn’t intended to serve the domain of
the request, without causing any authentication failure on an
honest client.

The main challenge of this definition is its reliance on an
implicit notion of intended identities. By writing a virtual host
configuration file, website administrators are expected to write
a faithful specification of their intended identities. Our main
claim in this paper is that the semantics of such configuration
files is counter-intuitive and broadly misunderstood, which
leads to very frequent virtual host confusion attacks.

In [15], Jackson et al. rely on the fallback mechanism on
HTTP servers to mount attacks where a malicious creates DNS
records that points to unrelated honest servers. By contrast,
we are interested in virtual host confusion exploits where
the user intends to connect to an honnest website, and the
attacker redirects the request to some other server that also has
credentials to serve the request but wasn’t intended to. There
has been at least one mention of this class of attacks in hacker
folklore [16], however, we are the first to give it a precise and
exhaustive definition and to measure how widespread it is in
practice and investigate its true impact.

A. TCP-layer Confusion

It is obvious that the original destination IP address of
an HTTPS request cannot be authenticated by TLS and may
be forged by a network attacker. The only exception to this
rule is when the client explicitly connects to the IP address
of the server instead of its domain. Athough certificates may
contain IP addresses, this ability is almost never used outside
of local networks, where it doesn’t provide any authentication
guarantee anyway.

On the other hand, the port number is explicitly part of
the same-origin policy. Thus, in principle, websites running
on the same domain but different ports are expected to be
isolated from each other, although there are some well-known
associated problems, most notably, the lack of port isolation
for cookies. Still, when a client sends a request to a non-default
HTTPS port, it includes the port in the Host header of the
request. Thus, even if a network attacker port-forwards the
request on its way to the server, it remains possible to know
what is the port that the user intended to connect to. However,
it turns out that in practice, all the most popular HTTPS servers
that we tested (including Nginx, Apache, and IIS) completely
ignore the port indicated in the Host header.

While this behavior is acceptable with plaintext HTTP,
where it is not unusual for requests to go through proxies
on non standard ports, in the case of HTTPS, it means that
it is effectively impossible to enforce port isolation over TLS,
since any certificate is valid on all ports. Given that an attacker
can redirect requests meant for one port on another (which, as
stated above, will also preserve cookies), including the port
number in the same origin policy is meaningless unless the
port is properly authenticated. Indeed, Internet Explorer no
longer includes the port in origins.

B. HTTP-layer Confusion

By far, the most serious problem in the request handling
algorithm from Section II is the behavior when the Host
header does not match any of the selected virtual hosts on
the target IP address and port, which is to fall back on the
host marked as default, if present, or the first one otherwise.

The configuration in Figure 2 includes one of the most
widespread vulnerable patterns. A certificate valid for two
subdomains of a.com is used in virtual hosts on different
IP addresses (possibly on different physical machines).

The identity sets that were intended for this configuration
are respectively ({1.2.3.4 : 443}, {C1;Kt}, {www.a.com}) and
({4.3.2.1 : 443}, {C1;K

′
t}, {api.a.com}). When the server M



server {
listen 1.2.3.4:443 ssl default_host;
server_name "";
# Used if no SNI is present in client hello
ssl_certificate "/etc/ssl/a.com.pem";
return 400;

}

Fig. 3. Preventing virtual host fallback

receives the request (1.2.3.4 : 443, [], api.a.com), first virtual
host will be used, along with its certificate which happens
to be valid for api.a.com, thus leading to a virtual host
confusion. The attack can be prevented by adding an explicit
default virtual host to prevent fallback, as shown in Figure 3.
However, given that this mitigation requires the webmaster to
add an explicit fallback host to the configuration, we didn’t
expect that it would be a common practice.

C. TLS-layer Confusion

The development of cloud hosting has been a challenge
for TLS session caching. Traditionally, session were cached
locally by the server, but this approach doesn’t scale well to
infrastructures where there are multiple front-end servers that
cannot efficiently synchronize their caches, causing a lot of
unnecessary full handshakes to access the same service.

In response, a new cache mechanism was created where the
server encrypts the data structure of the session under a short-
term key and sends it to the client in a ticket [17]. This not
only saves a lot of space on the server but also makes it much
easier to synchronize the session cache across multiple servers
- only the key needs to be shared. It is worth noting that these
two caching mechanisms are not mutually exclusive; in fact, it
is not uncommon that a server would support both ticket and
session identifier-based resumption. Although in all main TLS
implementations, tickets have higher precedence, the attacker
is still able to force the server to use legacy resumption by
downgrading the connection of the client to SSL3.

There is a downside to the use of tickets - since one of the
motivation for using them is to share cache across multiple
servers, there is also a risk that the same tickets may be used
on different virtual hosts. This is a problem because it can
potentially allow to bypass certificate validation (whose results
are cached): if the user creates a session with a.com and his
next query is redirected by the attacker to the IP address of
b.com, where it is the only virtual host and it shares the same
ticket key as a.com, the client will resume the session without
ever seeing the certificate for b.com.

It is interesting to note that the server could have noticed
that the client was trying to resume a session for the wrong
certificate by looking at the SNI. However, the SNI is not part
of the session cache structure currently, thus, it is currently
possible to resume sessions regardless of the SNI. This points
to a possible improvement at the TLS level.

IV. HTTPS REDIRECTION ATTACKS

We now show how virtual host confusions can be exploited
by a network attacker to redirect and hijack HTTPS connec-
tions to popular web servers. We identify three main classes

of exploits, sorted by increasing impact (but decreasing com-
monness). The attacks described here are widely applicable
and have a high impact, and we illustrate them with a few
specific examples.

A. Exploiting unsafe redirectors on single sign-on relying
parties

The first class of exploits relies on the observation that
many websites only use HTTPS on the security-critical parts
of their website (for instance, the login form). If, on a low-
security virtual host, there exists either a page that redirects to
plain HTTP, or to an arbitrary page on another origin (open
redirector), then, by confusing a request on a high trust virtual
host to such a page, an attacker can redirect users to HTTP or
to his own website and thus, may learn some secret parameters
from the query string or URL fragment.

The prime candidate for this type of exploit is single
sign-on access tokens, used by Facebook, Twitter, Google or
Yahoo on a large proportion of websites as a replacement for
login forms. For instance, in the OAuth 2.0 protocol [18], a
client website registers its origin with the identity provider
(e.g. Google), and can obtain an access token to access the
user credentials by sending the user to the authorization page
on the identity provider’s website. This request includes a
redirection URL on the registered origin of the client website.
The access token is included in the redirection response in the
URL fragment.

Assuming that $RO=https://oauth.a.com is the
registered high-trust OAuth origin, but that it is served
by a virtual host that can be confused with the low-trust
https://www.a.com, for instance because they share a
wildcard certificate for *.a.com, an attacker must find a page
on www.a.com that redirects to HTTP or to his own website,
say on the path /p. To mount the attack, the attacker first
sends the user to the authorization form:

https://idp.com/token?redirect_url=$RO/p

which will in turn redirect the user to
https://oauth.a.com/p#token. The attacker
rebinds the IP address of oauth.a.com to point to
www.a.com. The request is thus redirected to, say,
http://attacker.com/#token which leaks the access
token to the attacker.

B. Exploiting hosted content on cloud storage websites

An interesting way to exploit virtual host confusion is to
transfer the compromise of a low trust origin (in particular,
one that is used to store user-submitted contents) to a high-
trust one. The underlying observation is that it is increasingly
common for origins with different trust levels to share the
same certificate. A simple variant of this exploit is for an
attacker to first find an XSS attack on a low trust origin such
as blog.a.com, and transfer his control over to a high-trust
origin such as login.a.com.

To illustrate this idea, we describe a complex exploit
against the popular cloud storage service Dropbox, which relies
on the full capabilities available to a network attacker. Dropbox
stores the public files of its users on the low-trust origin



dropboxusercontent.com, whereas it deploys state of
the art defenses on its high-trust origin www.dropbox.com,
including HTTP strict transport security (HSTS [19]) to pre-
vent any network attack.

However, non-public files cannot be served from the low-
trust origin, because they require access to the session cookie
to prove that the user is authorized to view the file. The
dl-web.dropbox.com origin is used for the purpose of
displaying files from the user’s Dropbox account while he is
logged in. This origin uses the same wildcard certificate as
www.dropbox.com.

The goal of the attacker is to confuse the dl-web and
the www virtual hosts, using a malicious HTML page from
his account. However, the victim does not have access to the
malicious page on dl-web, which is only visible with the
attacker’s Dropbox cookie. Unfortunately, cookies are well
known to offer no integrity guarantee even over HTTPS [20].
Thus, the attacker can simply force his own session cookie
on the victim - he is even able to do so temporarily without
overwriting the user’s own session - and send him to his
malicious page on dl-web. Then, by pointing confusing
the dl-web virtual host with www, the attacker is able to
completely gain control of the victim’s Dropbox account.

This attack is somewhat similar to the single sign-on one
above in that it uses well-known weaknesses in an ubiquitous
web feature to exploit virtual host confusion.

C. Exploiting shared TLS session caches

When two different servers or virtual hosts share a TLS
session cache or session ticket encryption keys, an HTTPS
connection to one host may be redirected to the other (using
session resumption). If one of these hosts has a lower trust level
than the other, this amounts to a cross-site scripting attack.

We demonstrated an exploit against the Amazon cloud
hosting two Mozilla servers: one high-trust used for
bug reports bugzilla.mozilla.org, and one low-trust
git.mozilla.org which includes a lot of user-submitted
content. The two servers use different TLS certificates but still
share a session cache. Hence, we were able to establish a TLS
session on the former, resume it on the latter, and successfully
load a page from low-trust origin under the high-trust one. That
is, the web browser thinks it has connected to the bugzilla
origin, but the data is loaded from the git origin.

D. Exploiting shared HTTP proxies on CDNs

In the two cases above, the attacker used virtual host
confusion to transfer a weakness from a low-trust origin where
it had low impact to a high-trust one. However, what if the
attacker was in fact in control of requests that go to the fallback
virtual host? Then, it would be able to completely impersonate
at the HTTP level any origin covered by the certificate that uses
this fallback. Interestingly, we found one large-scale instance
of this behavior.

Akamai is the leading content delivery network provider
on the web, claiming to be responsible for 20% of the total
Internet traffic [21]. As any CDN provider, Akamai has a large
network of points of presence (PoP) distributed all around the

world. The job of a PoP is to cache queries sent to the websites
of Akamai customers to reduce latency and distribute load.

Of course, when HTTPS is used, Akamai, like other CDN
services, cannot act as a man-in-the-middle [22]. Instead, it
requires its customers to upload their certificates and private
keys on the Akamai PoPs to serve HTTPS contents. Be-
cause the latency for loading a page depends on the slowest
synchronous HTTP query (typically when loading external
JavaScript libraries), Akamai servers offer an interesting fea-
ture: they allow the caching of contents that do not come from
Akamai customers but from arbitrary servers instead.

When a request for /prefix/a.com/path is received,
for a certain prefix, the PoP will forward the request to
a.com/path, including all the HTTP headers sent by the
client. It will then cache and forward the response from a.com
to the client. The remarkable aspect of this feature is that it
is enabled on the default virtual host of all Akamai PoPs. In
other words, the attacker has the ability to answer requests
made to the fallback virtual host of any Akamai server.

Fig. 4. A query to the NSA website routed to a malicious server by Akamai

Needless to say, the consequences are disastrous combined
with virtual host confusion. Concretely, the attacker is able to
fully impersonate any domain listed in a certificate uploaded
on an Akamai server, but isn’t served locally. If a customer
uploaded a wildcard certificate, say for *.linkedin.com,
then the attacker can control any subdomain that isn’t served
by Akamai on that server, such as www.linkedin.com.
Even if the attacker only finds a minor or unused subdomain
to impersonate, since he has access to the full HTTP headers
of the request, he is still able to steal even secure, HTTP-only
cookies from a domain, as shown in Figure 4 for the NSA
website.

An interesting feature of this attack is that it leaves abso-
lutely no trace. In HTTP server logs, a request for an unhandled
virtual host will be logged under the label of the fallback host,
and thus, it cannot be distinguished from an harmless query
to the attacker server for normal caching purposes. Indeed,
this critical weakness has existed in Akamai servers for nearly
14 years without getting noticed. Based on domains in the
Alexa list, we estimate that at least 12,000 websites had been
vulnerable to the attack, including 7 out of the top 10 in the
US.



E. Responsible Disclosure

All of the concrete web exploits that we presented in
this section have been disclosed to the affected websites with
the assistance of the Hackerone [23] group (which includes
security researchers from Google, Microsoft and Facebook).
The vulnerability in Akamai was acknowledged and quickly
fixed, and many websites vulnerable to virtual host confusion
attacks that we contacted also changed their HTTP server
configuration to prevent confusion attacks.

However, we didn’t try to contact websites that had vulner-
able single sign-on token origins directly, although the main
identity providers in charge of managing them have been
notified. Some of the websites that we contacted also didn’t
implement any changes after a 6 months period.

Regarding HTTPS multiplexing software, we found that
vendors consider that such attacks are mostly to blame on
improper configuration (in particular, none of the 3 webserver
authors we contacted considered removing the virtual host fall-
back mechanism for requests sent over TLS). We were however
able to convince Nginx and HAProxy to implement better
session cache isolation for their virtual hosts. Our proposal to
avoid the SNI to change between the initial handshake and later
resumption handshakes was rejected because it turns out that
such changes may happen in SPDY, as explained in Section V.

F. Impact Measurement

Although we present several concrete examples of the
virtual host confusion attacks against high-profile websites,
these particular exploits do not give a clear indication of the
general proportion of all websites vulnerable to such attacks.

Measuring a precise incidence rate and global impact is
challenging for several reasons. While there exists several
databases of collected certificates, which can easily be used to
compile statistics about how many domains they are valid for,
testing whether they are actually vulnerable requires a large
amount of request, proportional to the square of the number
of domains multiplied by the number of servers that handles
each domain.

Multi-Domain Certficates.
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Fig. 5. Identification and Issuance Violations

While almost half of all certificates are valid for 2 different
domains, in almost all cases, these certificates cover the www
and empty subdomains. Yet, even such apparently harmless

certificates turn out to be enough to allow virtual host confu-
sion exploits.

Certificates that contain 3 or more domains represent less
than 10% of all certificates; however, we observe that such
certificates are mainly used by websites with a high Alexa
rank. Lastly, it is interesting to note that around 1 in 60
certificates contain 10 domains or more.

Multi-Port Servers. We tested for HTTPS servers on com-
monly used alternate ports, such as 444, 4443 or 8443, and
other ports known to be used by administration interfaces, and
compared the returned certificate and response with the ones
from port 443.

We found that less than 0.08% of hosts returned the same
certificate on a different port, but a different response to our
test request. Of course, it is not possible to tell from this
result alone whether there is a virtual host confusion attack in
each case, since it depends on the intended identity separation
between the two ports. Nevertheless, manual inspection of
some of the results revealed certain obvious confusion patterns.
For instance, one of the results was an exchange market for
cryptographic currencies (such as Bitcoin) that used a separate
port to provide a service API. By redirecting requests to the
main server to the API port, it was possible for a network
attacker to spy on balances and orders made by the client.

Virtual Host Fallback. To confirm the scale of the host
fallback problem, we ran a simple test on the HTTPS-enabled
subset of the top 10,000 Alexa websites [24]. We simply
sent a request for the path / with a Host header set to
invalid.bad. We found that over 99% of the websites
returned a page with a valid HTTP 200 return code.

As a next step, we randomly selected certificates valid
for multiple domains and ran DNS queries to find instances
where some domains within a given certificate were served
from different IP addresses. We then tried to run a virtual
host confusion attack between two of the names served from
distinct IP addresses. The success rate of the attack for pairs
of names where both servers responded was over 97%.

Cross-Protocol Redirection. To evaluate how often HTTPS
website redirect to HTTP URLs, we first took the HTTPS-
enabled subset of the Alexa Top 10,000 websites [24] and sent
a request for the path /404. In about 1 out of 6 cases, this
request was redirected to HTTP. Next, we decided to manually
inspect the top 50 Alexa websites in the US that implement
a single sign-on system. We found that 15 of them had in
fact registered an HTTP origin with their identity provider
(allowing a network to get an access token to impersonate
the user without any effort). In 21 other cases, we found a
page that redirects to HTTP on the registered origin. Finally,
we found 11 instances where virtual host confusion could be
used to recover the access tokens.

Overall, the results of our study on the 50 most popular
websites in the US show that access tokens are for the most
part not adequately protected against network attacks, which
is consistent with previous results [25]–[28]. In particular, the
dangers of cross-protocol redirections appears to be widely
misunderstood, especially on websites that implement a single
sign-on protocol.



Shared Session Cache. Evaluating the scale of transport-
layer virtual host confusion attacks is a difficult task, because it
would in principle require to test the two modes of resumption
on all pairs of HTTPS server on the web. Instead, we developed
a best effort methodology that relies on the assumption that
cache sharing issues are only likely to occur on large cloud
infrastructures.

Thus, we searched for class C IPv4 address blocks that
had many HTTPS servers. For each such class, we picked two
random pairs, established a session on one and tried to resume
it on the other (on the second pair, tickets had been disabled).
This empirical search still turned up 180 results.

Upon further tests, it turns out that a number of these results
came from Google servers, which indeed let users resume
sessions for any service, regardless of SNI. However, none
of the Google servers we tested had a virtual host fallback,
thus, we didn’t find any concrete exploit. However, we did
find some true positives on the Amazon and Yahoo networks
which we were able to exploit.

V. SESSION CONFUSION: SPDY AND HTTP/2

We have demonstrated in the previous sections that there
exists a significant gap between the models used to analyze
the security of TLS and the actual deployment of HTTPS in
practice. However, Web technologies are evolving so quickly
that even the HTTPS multiplexer model presented in this
paper fails to capture the current uses of TLS on the Web. In
this section, we investigate the next-generation Web protocols:
SPDY [29], and its derived IETF proposal for HTTP 2.0 [30].
Although we don’t consider QUIC specifically, many of our
findings for SPDY apply to QUIC as well. The most important
design goal of these protocols is to improve the latency over
HTTPS. To this end, SPDY attempts to reduce the number
of non-resumption TLS handshakes necessary to load a page
by trying to reuse previously negotiated sessions that were
negotiated with a different domain, under certain conditions;
in current HTTP2 drafts this practice is called connection reuse
[30, Section 9.1.1].

Recall that in normal TLS resumption, the browser caches
TLS sessions indexed by domain and port number. On the
client-side, there is no confusion between the different notions
of identity: the origin of the request matches the SNI sent
by the client, its HTTP Host header, the index of the session
in the cache, and the origin used by the same-origin policy
(assuming the client is not buggy). Thus, when accessing
a website https://w.com, the browser may resume its
session to download a picture at https://w.com/y, but
it needs to create a fresh session if the picture is loaded
from https://i.w.com, even if the domains w.com and
i.w.com are served by the same server, on the same IP, and
using the same certificate.

Connection reuse in SPDY and HTTP 2.0 is a new policy
that allows the browser to send the request to i.w.com on the
session that was established with w.com, because it satisfies
the two following conditions:

1) the certificate that was validated when the session to
reuse was created also covers the domain name of the
new request;
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Fig. 6. Connection Reuse in SPDY

2) the original and new domain names both point to the
same IP address.

Figure 6 illustrates connection reuse in SPDY: each arrow
represents the TLS session used for the request(s) in its label.
Because w.com and i.w.com point to the same IP on Server
1, which uses a certificate that covers both names, the same
TLS session can be reused for requests to both domains.

While connection reuse may look like a simple and
straightforward optimization, we claim it is in fact a funda-
mental change that contradicts the (implicit or explicit) as-
sumptions used in several TLS and HTTPS mechanisms, such
as TLS client authentication [31], Channel ID and Channel
Bindings [32], [33] or certificate pinning [34], [35]. Concretely,
every feature that is derived from the TLS handshake should
no longer be considered to apply to the domain for which the
session was created, but instead to every name present in the
certificate used during this handshake.

It is tempting to argue that the fact domains appear in
the same certificate is a clue that their sharing of some
TLS session-specific attributes could be acceptable, but we
stress that it is in fact absolutely not the case. For instance,
CloudFlare is a leading CDN service provider that enables
HTTPS on its customers domains by managing certificates that
cover a large number of their clients’ domain names [7], [36].
Because CloudFlare is willing to include any domain in their
pool of certificates, it is common on today’s web to connect
to a website whose certificate is also valid for a malicious,
attacker-controlled domain. With connection reuse, requests
for the honest and malicious domain will use the not only the
same TLS session, but possibly the same connection as well.

Another notable aspect of connection reuse is the fact that
it was deployed in multiple major browsers, including Chrome,
Safari and Internet Explorer, without any significant security
review or public discussion of its potential impact. In fact, the
authors only learned about this feature when Nginx developers
refused their proposal to require strict matching between the
TLS SNI and HTTP Host header, as this matching is clearly
contradicted by connection reuse.



We now present an attack against SPDY connection pooling
that allows an attacker to impersonate any arbitrary set of
HTTPS servers (even if these servers do not support SPDY).
The attack relies on a very simple observation: with connection
reuse, when a certificate is accepted by the browser during
a TLS handshake, the established session can potentially be
used for requests to all the domains listed in the certificate.
The condition about the IP address of all these domains being
the same doesn’t matter to a network attacker who is anyway
in control of the DNS.

Fig. 7. Interstitial Certificate Warning in Chrome

An invalid (e.g. self-signed) certificate can be accepted by
the user, and measurement studies show that this is not an
uncommon occurrence [37]. While clicking through a certifi-
cate warning should normally only compromise the one origin
on which the warning was displayed, it may not be the case
if the browser implements connection reuse. We found that
in Chrome version 36, a network attacker may trick the user
into clicking through a certificate warning for an unimportant
domain (users may be used to ignore such warnings when
connecting to captive portals, used for instance in hotels and
other public network), while the certificate actually includes an
arbitrary number of other domains in the subject alternative
name extension, which are not displayed in the interstitial
warning (as shown in Figure 7).

Then, if the user attempts to connect to any of these added
domains (say, facebook.com), the attacker can tamper
the DNS request for facebook.com to return his own IP
address, so that the browser will accept to reuse the connection
established with the attacker. Although Chrome will keep the
red crossed padlock icon in the address bar because of the
invalid certificate of the original session, the attacker can still
collect the session cookies for any number of websites in the
background, or try to turn the padlock icon back to green with
a key synchronization and renegotiation attack consisting of
the first and third steps of the triple handshake attack [33].

Fig. 8. Compromise of a Pinned, HSTS-Enabled Origin

Interestingly, since the only trust decision made by the
browser occurs when the bad certificate is accepted, this
attack is able to bypass the security protections in Chrome
against malicious certificates. For instance, if a domain enables
HTTP Strict Transport Security, any certificate warning on
this domain cannot be ignored by the user. Similarly, the
Chrome browser includes a pinning list of certificates used
by top websites, which successfully detected at least two
man-in-the-middle attacks that were using improperly issued
trusted certificates. Since these checks are only performed
when a certificate is validated, they fail to trigger on reused
connections, as shown in Figure 8. The user isn’t shown any
further certificate warning after the one in Figure 7.

Following our report to Chrome, connection reuse has been
disabled until its adverse effects on certificate pinning and
other policies can be mitigated.

VI. COUNTERMEASURES AND MITIGATION

Thorough this paper, we have pointed out multiple flaws
both at the transport and application levels that prevent proper
virtual host isolation on the server, and break the same origin
policy on the client as a result. In this section, we summarize
the possible countermeasures and mitigations that can prevent
this class of attacks at each network layer.

Prevent Virtual Host Fallback. Our evaluation shows that the
fallback mechanism of the virtual host selection algorithm in
current HTTPS servers is by far the leading factor in exploiting
confusion vulnerabilities. For instance, even though all the
services hosted by Google suffer from TLS session confusion,
it cannot be directly exploited because all the frontend servers
serve the same set of virtual hosts without fallback.

We propose that upon receiving a request with a Host
header that doesn’t match any of the configured server names,
the server should immediately return an error. In particular, a
request without a Host header would always be rejected. This
change only needs to apply to requests received over TLS. We
implemented this change in Nginx with a patch less than 100
lines long. However, because this change does break support
for legacy HTTP 1.0 clients as well as some poorly configured
websites, it isn’t likely to be enabled by default in the major
web servers.

Authenticate Port in Host Header. Currently, web servers
ignore the port indicated by the client in the Host header,
thus making it useless for the purpose of origin isolation. We
propose that for requests received over TLS, a web server
should compare the port included in the Host header with
the one the request was sent to. If they don’t match, an error
should be returned. We implemented this change in a patch to
Nginx less than 50 line long.

We argue that unless this change is implemented in all
HTTPS server software, browsers should stop using the port
for origin isolation purposes, given that this isolation is mostly
illusionary. This is the approach currently adopted by Internet
Explorer.

Prevent Cross-Virtual Host Resumption. Normally, there is
no circumstance under which a session negotiated on a given
virtual host would ever be resumed on another host with a



different name or certificate. Given that we have found config-
uration errors that lead to sessions being accidentally shared, it
may be necessary to implement a TLS-level protection against
such occurrences.

Fortunately, the SNI provides an early indication of the
virtual host the user intends to connect to. Thus, if the server
stores in its session cache (or, equivalently, in the returned
ticket) the value of the SNI sent by the client during the last
full handshake, it can compare it with the value sent by the
client during resumption. If the two do not match, resumption
must be aborted and a full handshake initiated instead.

If the client hello does not include the SNI extension, it is
up to the server application to provide a default value. In the
case of HTTP, the sensible default is to use the server name
of the virtual host from which the certificate configuration was
taken.

We implemented this feature in a patch to OpenSSL of
about 160 lines. We also modified Nginx to provide the default
SNI value, and verified that the change prevents cross virtual
host session resumption for with tickets and with a shared
session cache.

Prevent SSL Downgrading. Current browsers attempt to
maximize their compatibility with buggy TLS implementations
by retrying failed handshakes with downgraded TLS versions,
all the way from TLS 1.2 to SSL3. There has been concerns
about this behavior, notably because the newest cipher suites
are only available in TLS 1.2.

It turns out that it can also be taken advantage of by
a network attacker to exploit virtual host confusion attacks.
For instance, the cache confusion attack against Mozilla we
described above doesn’t work with ticket-based resumption.
Thus, the attacker needs to downgrade the TLS version to
SSL3 to allow the cross-certificate resumption.

A draft has been already submitted to the TLS working
group of the IETF to introduce a new extension that prevents
the attacker from downgrading the TLS version [38]. We
advocate the adoption of this draft in light of the confusion
exploits enabled by an attacker disabling session tickets and
SNI.

Configuration Guidelines for Current Web Servers. Even
without modifying web server software or the TLS library,
there are some safe usage guidelines that current webmasters
can use to mitigate the attacks described in this paper. As a
general rule, we recommend that only domains with the same
trust levels should be allowed to share a certificate. It is best
to avoid wildcard certificates, as they are valid even for non-
existing subdomains, which increases the likelihood of a virtual
host fallback.

Anytime a certificate is used on a virtual host, it is neces-
sary to ensure that all the names that appear in its certificate
have a matching virtual host configured on the same IP address
and port. The same check applies to every other IP address and
port where this certificate is used. For domains with wildcards,
the associated virtual host must use a regular expression that
reflects all possible names. In cases where only some of the
domains in the certificate are served on this IP, it is necessary

to configure an explicit default host similar to the one given
in Figure 3.

The session cache configuration directives, such as
ssl_session_cache or ssl_session_ticket_key
in Nginx, should only appear in the context of a virtual host
definition. Furthermore, all the ticket keys and shared cache
names must be different in every virtual host where they are
defined.

Cross-protocol redirections should be avoided in all TLS-
enabled virtual hosts. In many cases, there exist both plaintext
and encrypted versions of the same virtual host - when this is
required, all redirections and URLs used on that host should
be protocol-relative, e. g. //a.com/path.

Finally, whenever possible, it is best to avoid cookies
altogether, in particular to implement sessions. The policy
for storing and sending cookies is a lot more flexible across
subdomains than the same-origin policy. Thus, virtual host
confusion can provide new means of forcing and stealing
cookies for an attacker. Instead, it is safer to use the origin-
bound localStorage and sessionStorage.

VII. CONCLUSION

In this paper, we have have shown that the deployment
of HTTPS in various kinds of shared environments (shared
or overlapping certificate, content delivery networks, shared
session cache, shared domain on different ports) suffers from
weaknesses in the handling of HTTP requests and TLS session
cache that can lead to high impact exploits. In particular,
we describe the first practical exploits against: TLS version
downgrade, server name indication, session tickets, and SPDY
connection pooling. We propose small and targeted changes to
web server and TLS libraries that could severely limit the com-
monness and impact of virtual host redirection weaknesses.
Until these changes are accepted, website administrators must
implement the mitigations given in Section VI instead.
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