
The BEAST Wins Again: Why TLS 
Keeps Failing to Protect HTTP

Antoine Delignat-Lavaud, Inria Paris
Joint work with K. Bhargavan, C. Fournet, A. Pironti, P.-Y. Strub



INTRODUCTION

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



1. Authentication
– Must be talking to the right guy

2. Integrity
– Our messages cannot be tampered

3. Confidentiality
– Messages are only legible to participants

4. Privacy?
– Can’t tell who we are and what we talk about

Why do we need TLS?

Active Attacks
(MitM)

Passive Attacks
(Wiretapping)



• Web attacker

– Controls malicious websites

– User visits honest and malicious sites in parallel

– Web/MitB attacks: CSRF, XSS, Redirection…

• Network attacker

– Captures (passive) and tampers (active) packets

What websites expect of TLS

Strictly stronger



What websites expect of TLS

If a website W served over HTTP is secure
against a Web attacker, then serving W
over HTTPS makes it secure against a
network attacker.



What websites expect of TLS

If a website W served over HTTP is secure
against a Web attacker, then serving W
over HTTPS makes it secure against a
network attacker.



• TLS optional by default in HTTP

• Cookies helplessly broken

• TLS adds own identity and session systems
– May not agree with the HTTP ones

• HTTPS MITM is a beast
– Arbitrary requests, run JS, side channels…

HTTPS weaknesses



• Heartbleed, GnuTLS SID corruption
– No excuse for memory corruption bugs

• “Goto fail”, GnuTLS SA-2014-2, CCS bug
– No excuse for bad implementation of protocol

• Broken PKI (ANSSI, Indian CCA)
– Can’t be helped, but improving overall

Not in this talk



• Active network attacks against HTTPS

– Public networks

– DNS attacks

– Corporate/ISP proxies

– Governments

• TLS exploits enabled by HTTP capabilities

In this talk



• Active network attacks against HTTPS

– Public networks

– DNS attacks

– Corporate/ISP proxies

– Governments

• TLS exploits enabled by HTTP capabilities

In this talk

Beastly Attacks



• Active network attacks against HTTPS

– Public networks

– DNS attacks

– Corporate/ISP proxies

– Governments

• TLS exploits enabled by HTTP capabilities

In this talk

Beastly Attacks

Only useful against strongest websites
(Google, Facebook, Twitter, Amazon…)



• Renegotiation attack [Ray, Rex ‘09]

– Protocol logic flaw; nice cookie exploit

• BEAST [Rizzo, Duong ‘11]

– Adaptive chosen plaintext + block boundary

– Exploits known IV vulnerability

– Can recover encrypted data

Beastly Attacks



• CRIME/BREACH [Rizzo Duong ’12; Prado et al ‘13]

– Adaptive chosen plaintext + Length side channel

– Timing variant TIME [Be’ery, Shulman ‘13]

• Padding Oracle [Vaudenay ‘02]

– Timing variant Lucky13 [Al Fardan, Paterson et al. ‘13]

• More timing attacks are likely

Beastly Attacks



COOKIE CUTTER
CANCEL HSTS AND STEAL SECURE SESSION COOKIES

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



• Attack: SSL stripping [Marlinspike, BH’09]

– Attacker proxies HTTP requests to HTTPS server

• Defences:

– Strict Transport Security (HSTS)

– HTTPS Everywhere and similar extensions

– User awareness

Reminder: HTTPS is optional



• Shared HTTP/HTTPS cookie store

• Cookies don’t follow SOP

– No port; non-public DNS suffix of domain

• ‘secure’ flag: don’t send over HTTP

• Server can’t tell if set over HTTP or HTTPS

Reminder: HTTPS and cookies



“HTTPS is insufficient to prevent a network attacker
from obtaining or altering a victim's cookies […]; by
default, cookies do not provide confidentiality or
integrity from network attackers, even when used in
conjunction with HTTPS.”

Adam Barth, RFC 6265

Reminder: HTTPS and cookies



• Impact has increased in modern applications

– Asynchronous actions (AJAX)

– No user feedback to session replacement

– User data sent to attacker account

• Defeats many CSRF protections too

– The deputies are still confused, Lundeen, BHEU’13

Reminder: cookie forcing



• Do not use cookies

• Use HSTS (not HTTPS Everywhere)

– With includeSubDomains option

– On top-level domain of website

– Do not use any subdomain (unless sent to top once)

• Bind cookie to TLS channel (Chrome: Channel ID)

Defending against cookie forcing



http://docs.google.com/A

https://accounts.google.com/login?goto=http://docs.google.com/A

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect […]
Location: http://doc.google.com/A

Set-Cookie: SID=beefcafe133

7; domain=.google.com; secure; httpOnly;
Connection: Keep-Alive

You are being redirected to doc.google.com …

Alice Google

Fragment 2

Fragment 1



http://docs.google.com/A http://docs.google.com/A?XXXXX

https://accounts.google.com/login?goto=http://docs.google.com/A?XXXXX

POST /login HTTP/1.1 […] user=alice&password=123456&goto=…

HTTP/1.1 302 Redirect […]
Location: http://doc.google.com/A?XXXXX

Set-Cookie: SID=beefcafe1337; domain=.google.com

; secure; httpOnly;
Connection: Keep-Alive

You are being redirected to doc.google.com …

Alice Mallory Google

Fragment 3

Fragments 1-2

TCP RSET



22

Demo at https://bh.ht.vc

https://bh.ht.vc/


• TLS weakness: truncation [Wagner, WEC’96]
– TLS (close_notify alert) vs TCP (RSET) termination

– Well known (Pironti, BH’13)

• HTTP weaknesses
– Plaintext injection (e.g. semi-open redirector)

– Security depending on presence of header/flag

– Liberal parsing of malformed HTTP messages

Cookie cutter: ingredients



• If browser accepts the truncated cookie, it is 
stored without the secure flag

• Need an HTTP request to sniff cookie

• What about HSTS?
– Strict-Transport-Security: max-age=10000; incl…

– Truncate max-age to get rid of HSTS in <10s

Cookie cutter: impact



• Reject malformed HTTP messages / headers

• Enforce close_notify (chunked encoding?)

• Chromium: CVE-2013-2853

• Safari: APPLE-SA-2014-04-22-1

• IE and FF correctly reject truncated headers

Cookie cutter: mitigation



VIRTUAL HOST CONFUSION
BREAK SAME ORIGIN POLICY AND CERTIFICATE VALIDATION

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



Public Key Infrastructure (PKI)

Endpoint certificate

Intermediate CA certificate

Root Certification Authority certificate



• Apple Secure Transport: “goto fail” (2014)

• GnuTLS: check_if_ca (2014)

• NSS (and others): null byte in CN (BH 2009)

• …

• IE: CA constraint ignored (2002)

• Path length, key usage, signature, revocation…

Are certificates checked properly?



Can CAs be trusted?

With M. Abadi, A. Birrell, I. Mironov,
T. Wobber and Y. Xie (NDSS’14)



• BlackHat: 2009, 2010, 2011,  2012

– Marlinspike, Sotirov, Jarmoc, Hansen… 

• Academic papers (see e.g. Clark et al. survey)

• Certificate Transparency, DANE, TACK, 
Perspectives, Convergence, …

PKI madness



Background: HTTPS multiplexing

Virtual Host 1

Virtual Host 2

Virtual Host n

Certificates

Ticket Keys

Session Cache

HTTPS Multiplexer

.

.

.

.

.

.

(IP1, Port1)

(IP2, Port2)

(IPk, Portk)



https://x.y.com:4443/u/v?a=K&b=L#hash

Background: HTTPS multiplexing

Routing
Select virtual host

Request processing
Produce response

Kept by
Browser



Background: TLS handshake

Client Server



Background: TLS resumption

Client Server



• Transport layer
– Server Name Indication (SNI)

– Certificate (union of CN and SAN)

– Session identifier

– Session ticket

• Application layer
– Host header

TLS vs HTTP identity



• IP address and port

• Name (for SNI and Host header)

• Certificate

• Session cache, session ticket key

• Ciphers, client authentication, OCSP staple …

Virtual host configuration



• (IP, port) of request = (IP, port) of chosen host

• TLS settings picked from host whose name 
matches SNI, or default (fallback)

• Request is routed to host whose name 
matches Host header, or default (fallback)

Request routing



• Fallback: no guarantee selected host 
was intended to handle the request

• Known vector [Jackson, CCS’07]

Virtual host confusion



• Two TLS servers on the same domain but on 
different ports

– Port always ignored in Host header.

– Attacker can redirect freely between ports

– Port is essentially useless for same-origin policy

Simple Examples



• One certificate {x.a.com, y.a.com} (or *.a.com)

• Server at IP X only handles x.a.com

• Server at IP Y only handles y.a.com

– Attacker can redirect packets from X to Y

– Server at Y returns a page from y in x.a.com origin

Simple Examples



• TLS weaknesses
– Resumption authenticates nothing (not even SNI)

– Downgrade to SSL3 to get rid of SNI and ticket

– Multi-domain and wildcard certificates

• HTTP weakness
– Virtual host fallback: a request for x.com should not 

return a page meant to be served on y.com

Host confusion ingredients



Virtual host confusion can transfer weaknesses
and vulnerabilities (e.g. XSS, user contents,
open redirectors, cross-protocol redirections,
X-Frame-Options, CORS, …) across origins

– Transfer XSS in mxr.nozilla.org to addons
(Hansen & Sokol, HTTPS Can Byte Me, BH’10)

How to exploit



CROSSING ORIGIN BOUNDARIES
STEAL OAUTH/OPENID TOKENS, SECRET URL FRAGMENTS…

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



• OAuth redirect_uri access control is origin based

• If the token origin can be confused with any 
origin with a redirect-to-HTTP, attacker wins
– Token is in URL fragment (preserved by redirection): 

attacker can inject script in HTTP response to steal it

• Cross-protocol redirection should be avoided
– Attack built into Google: nosslsearch.google.com

Cross-protocol redirection is harmful



https://www.pinterest.com https://www.pinterest.com

https://www.facebook.com/dialog/oauth?client_id=X&redirect_uri=U

Alice

Mallory

Facebook

api.pinterest.com

HTTP/1.1 302 Location: U = https://www.pinterest.com/#token=XXX

*.pinterest.com

HTTP/1.1 302
Location: http://api.pinterest.com

HTTP/1.1 302
Location: http://api.pinterest.com

http://api.pinterest.com

#token=XXX



Demo at https://bh.ht.vc

https://bh.ht.vc/


• Host confusion with user content origin

• Common to use different top-level domain to 
avoid related-domain cookie attacks

– dropboxusercontent.com, googleusercontent.com

• User content origins should use separate 
certificates

Exploit: user contents



• Data on the user’s own account is often on a 
higher trust domain to access session cookie

– Dropbox: own files on dl-web.dropbox.com

• Short lived cookie forcing allows temporary 
forcing of attacker session

– Break into high trust origin, recover victim session

Exploit: user contents



1. Attacker stores malicious file on his account
2. Temporary forcing of attacker session on victim
3. Rebind www.dropbox.com to dl-web.dropbox.com
4. Compromise victim’s session

http://www.dropbox.com/


EXPLOIT: SHARED SESSION CACHE
CONFUSE ORIGINS ACROSS CERTIFICATES

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



• 3 kinds of TLS authentication:
– Certificate

– Valid session identifier in server cache

– Valid session ticket encrypted by server key

• If a session cache or ticket key is shared across 
servers with different hosts, certificate check can 
be completely bypassed

Beware of TLS session cache



• Session cache sharing more common than 
ticket key sharing across servers

– Seen on Amazon, Mozilla and Yahoo servers

• To exploit, downgrade connection to SSL3

– Tickets have precedence over session identifier

Beware of TLS session cache



1. Create SSL3 session on bugzilla.mozilla.org
2. Point bugzilla.mozilla.org to git.mozilla.org
3. Resume session and request malicious file 
4. Virtual host fallback

Demo at https://bh.ht.vc

https://bh.ht.vc/


EXPLOIT: SHARED REVERSE PROXY
IMPERSONATE THOUSANDS OF TOP RANKED WEBSITES

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



• Shared reverse proxies are common (e.g. CDN)

• Handling of TLS is always awkward
– CloudFlare: domain packing in one certificate

– Akamai: dedicated IP for customer certificate

– Google Apps: SNI (or dedicated IP)

• What is the fallback virtual host?
– Akamai: default host is an open proxy (!)

Beware of shared reverse proxies



Demo at https://bh.ht.vc

https://bh.ht.vc/


• Do not mix low-trust and high-trust 
(sub)domains in certificates

• Configure a fallback host on every IP, that 
returns an error code (not a redirection)

– Nginx: default_server option of listen directive

– Apache: first VirtualHost that matches IP/port

Preventing host  confusion



• Server-side cache only required for SSL3 and can 
often be disabled
– If required, server should have proper cache partition 

or let admin configure explicit shards (shared:XYZ:1m)

• With a server-wide ticket key, make sure all 
servers have the same configured hosts
– Isolation of name-based hosts is weak in TLS

TLS session configuration



 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling

SPDY CONNECTION POOLING
WHO’S CONFUSING WHAT NOW?



• Problem: websites use subdomains for origin 
isolation; requires a handshake for each

• Idea: let’s reuse sessions even for requests to 
a different domain if:

1. New domain covered by initial certificate

2. DNS points to same server

SPDY connection pooling



SPDY connection pooling

Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x

https://w.com/y

HTTP Browser

w.com
i.w.com

Server 1

fb.com

Server 2

https://fb.com/t

https://i.w.com/x
https://w.com/y

SPDY



• None of the security theorems proved on TLS 
apply to browsers that reuse connections

• Every session-specific guarantees extends to 
all domains in the session’s certificate

• Standard in current HTTP2 IETF drafts

SPDY connection pooling



Sorry, not patched yet

Exploits



TRIPLE HANDSHAKE
BREAKING CLIENT CERTIFICATE AUTHENTICATION

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling

© Raed667



• Handshake creates new TLS session

• Key exchange yields pre-master secret (PMS)

• Master secret: hash of PMS and nonces

• Session parameters: PMS, client & server 
certificates, cipher, session identifier

Reminder: TLS Handshake



Background: Ray & Rex 2009 Attack

Handshake (New TLS Session)

Handshake (New TLS Session)

GET /legitimate/action HTTP/1.1
Cookie: SID=xyz

Alice Mallory Google

GET /malicious/action HTTP/1.1
X-Ignore-This: 

Renegotiation



• TLS Weakness

– Renegotiation doesn’t bind old and new sessions

– Implementations allow server certificate to change

– Implementations concatenate data across sessions

• HTTP Weakness

– Message format is unstructured: can inject prefix

Background: Ray & Rex 2009 Attack



• Mandatory renegotiation indication extension

• SRI = verify_data (hash of message log) of 
latest handshake on current connection

• SRI binds new TLS session to previous one

• Fresh connection: empty SRI

Mitigation: Ray & Rex 2009 Attack



TLS session headache

M S

C S

C M

M S

2009 Renegotiation Attack

Triple Handshake Attack

synchronize



3Shake Step 1



• C <-> M and M <-> S use same PMS

– RSA: M re-encrypts C’s PMS under S’ public key

– DHE: M sends degenerate group parameters

• PMS, MS, sid aren’t unique to a TLS session

3Shake Step 1



3Shake Step 2



• Resume C <-> M on C <-> S

– TLS resumption doesn’t preserve authentication

• M doesn’t need to tamper any message: C and 
S agree on the same verify_data

• tls-unique binding broken after resumption

3Shake Step 2



3Shake Step 3

Data (injected by M) =
GET /secret/data HTTP/1.1
Host: S
X-Ignore-This:

Data’ (sent by C) =
GET / HTTP/1.0
Host: M
…



• M can trigger C <-> S renegotiation
– Certificate can still change

• If S asks for client certificate, C thinks she logs 
in on M, but actually authenticates to S

• M can inject data to S before renegotiation
– Implementations still concats data across sessions

3Shake Step 3



Demo at https://bh.ht.vc

https://bh.ht.vc/


• Conditions

– C is willing to authenticate on M with her certificate

– C ignores certificate change during renegotiation

– S concatenates the data sent by M and C

• Impact

– M can inject malicious data authenticated as C on S

3Shake Impact



• C can block server certificate changes
– Chomium (CVE-2013-6628)

– Safari (APPLE-SA-2014-04-22-2)

– Internet Explorer (KB257591)

• We propose MS’ = PRF(PMS, tls-session-hash)
– tls-session-hash = hash of the handshake messages 

that created the session up to client key exchange

3Shake Mitigation

draft-bhargavan-tls-
session-hash



CONCLUSION
WHY TLS FAILS TO PROTECT HTTP

 Introduction
 Cookie Cutter
 Virtual Host Confusion

 Crossing Origin Boundaries
 Shared Reverse Proxies

 Triple Handshake
 Conclusion

 Shared Session Cache
 SPDY Connection Pooling



• “Liberal in what you accept”

– Parsing is security critical, malformed = reject

• Security should not rely on anything being
present (additions can relax security)

• Beware of side-effects on data processed
before its integrity is confirmed

Lessons: Cookie Cutter



• We want:
– Routing to only depend on authenticated inputs
– Consistent routing on servers sharing credentials

• Your job to achieve authenticated, consistent 
routing in current HTTPS software

• Beware of the “same-certificate policy”
– Same-certificate attacker is possible!

Lessons: virtual host confusion



• We have a big TLS API problem

– TLS isn’t just a drop-in socket replacement

– All difficult problems handed off to the application

• Crypto values from handshake (PMS, MS, SID, 
verify_data) don’t identify session or participants

– Will be fixed; lesson learned for TLS 1.3

Lessons: triple handshake



• miTLS: verified TLS implementation
– No more “goto fail” bugs

– Performance vs “heartbleed” trade-off

• Verified protocol libraries
– TLS API is too difficult for applications to use

– Verify TLS + thin protocol wrapper together

• WebSpi, F*: evaluating the security of websites 

What we are doing about it



QUESTIONS

Thanks

Google
Mozilla
Microsoft
Facebook

HackerOne
Dropbox
Akamai
Apple

Adam Langley
Piotr Sikora
Anton Mityagin
Brian Sniffen

Alex Rice
Stephen Ludin
Eric Rescola
Ryan Sleevi


